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Abstract
International Center for Numerical Methods in Engineering

Department of Civil and Environmental Engineering

Master of Science

Development of a numerical model for the transport of dust

by Yuyang WANG

This master thesis focuses on the development of an numerical model to sim-
ulate the transport of dust particles eroded from land surface and convected
by wind flow.

The first part of this thesis is the literature review about existing methods
to model the transport of dust particles. Analytical methods may produce
some solution on given condition while numerical solution may extended
to an even wider application with arbitrary boundary conditions appearing
naturally. Based on these methods, the erosion mechanism is that once the
friction velocity lager than the threshold friction velocity, particles are gener-
ated and entering the air becoming free particles which can be convected by
wind flow.

The second part is another core of this thesis, where we focus on the finite ele-
ment methods to solve the mathematical model proposed for the dust trans-
port. Special techniques have been introduced considering the convection
dominated cases which will cause unstable solutions of the problem, while
the shock capturing method are also used to eliminate the the local oscilla-
tions appearing in regions where solution has sharp gradient.

In the last part we implement our model in FEMUSS, which is a multiphysics
simulation software written in Fortran 2003. Specified cases are designed
in order to verify the effectiveness of the code and model. Numerical tests
show that our model works very well and gives more accurate solutions. The
mechanism found in the experiments can be reproduced by our numerical
solution. In order to take advantage of numerical methods, we also present a
real application of our model trying to simulate the dust transport in a large
wind tunnel, where we can see the concentration dynamics evolve with time.
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Chapter 1

Introduction

In atmospheric science, researchers have paid much attention to dust espe-
cially like aerosols because of their modification of the photochemical pro-
cess, which holds the key to the atmospheric radiation related to the earth’s
radiative budget for investigating the climate change. Aerosols are usually
generated from two main sources and finally could affect the global climate
change: 1) the anthropogenic sources of aerosols including fossil fuel emis-
sions, biomass burning and other agricultural or industrial activities; 2) the
natural sources of aerosols derived from the sea salt and surface dust emis-
sions[1]. These resuspended dust not only affects the atmospheric radiation,
but also causes injury to sensitive plants and reduce visibility in the air.

In civil and environmental engineering, there is an increasing interest in min-
eral dust in the atmosphere and the corresponding negative impacts. The
prerequisite for studying these impacts of aeolian dust is to determine the
spatial distribution of dust concentration and its temporal variations. How-
ever, although numerous studies[2, 3, 4] have found some quantitative re-
lationship in this subject, a complete model in terms of fluid dynamics has
not been proposed yet. This is because the processes of dust emission and
transport are very complex and difficult to model. Precisely, dust emission
depends on an interactive set of physical processes governed by many fac-
tors such as climate like high wind and low rainfall, soil property (like soil
composition, texture, aggregation and crusting), and surface roughness (like
non-erodible elements and vegetation), and integration of these parameters
quantitatively is a cumbersome work. Some pollutants like aerosol and dust
transport generated by wind erosion in the atmosphere are potentially dan-
gerous because the high mobility of the smaller particulate would have ad-
verse effects on human health.

In practical application, we are interested in particle size ranging from 0.1µm
to 100µm because these particles plays an important role for air pollution
and human health. For example, PM10 describes a particulate matter with
diameter that is generally 10µm or smaller; PM2.5 is also another particu-
late matter 2.5µm or smaller. PM10 or PM2.5 make up a large proportion of
dust that can be drawn deep into the lungs, and even worse, larger particles
tend to be trapped in the nose, mouth or throat. Chemical properties vary
depending on the sources of particles, but dust is not a particular chemical
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substance but a classification of particles by size rather than chemical prop-
erties. So it is of significant importance that we pay attention to this group of
dust.

The finite element method is a helpful tool to deal with the numerical sim-
ulation of multi-physics problems. However, the complexity of the partial
differential equations(PDEs) found in the problem usually makes these equa-
tions to be solved with instabilities or oscillation within the computational
domain. Special techniques are required to eliminate these unstable solu-
tions. For the incompressible Navier-stokes equations, numerical instabilities
arise from incompressibility constraint and the presence of convection dom-
inant terms. On the other hand, the lack of diffusion term in the Galerkin
discretization terms was firstly regarded as the instability source, so the first
attempts were to add an extra diffusive term and were called the artificial
viscosity terms. But these methods are not consistent, i.e. the exact solution
of the continuous problem does not satisfy the perturbed problem, result-
ing in a loss of accuracy. So the first consistent formulation is the stream-
line upwind Petrov Galerkin method(SUPG); this method and many similar
methods like Galerkin Least-squrare(GLS) and Sub-grid scale(SGS) try to sta-
bilize the convection-diffusion equation by adding an extra stabilization term
which is proportional to the residual.

1.1 Objective

The objective of the present thesis is to implement a gravitational model for
the transport of particles in a fluid, and validate these models with some
practical applications such as the simulation of ventilation in tunnels.

1.2 Structure of the work

Let us close the introduction describing the organization of the work.

In chapter 2 we discuss the dust transport phenomena in nature arising from
many problems.Their dynamic behaviors are very important to human health
and the environment. Small dust particles such as PM10 and PM2.5 in air
may be drawn into the body with every breath directly physical or even be
absorbed into blood. The mechanism of how dust particles affect human
health is explained briefly and strategies that can be designed to remove or
decrease their negative effect are presented.

In chapter 3 the analytical methods used to simulate the dust concentration
are summarized. However, in a general cases, the analytical solution is im-
possible to find. Following the traditional research lines that can be found in
references, the dust generation mechanism is analyzed, with important pa-
rameters such as the threshold velocity and the horizontal and vertical dust
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flux in the computational domain. Finally, the dust transport model is given
in terms of a group of transient Navier-Stokes equations and a convection-
diffusion equation. The boundary conditions for the Navier-Stokes equations
are flexible, which means that depending on the problem we would like to
model, boundary conditions can be different. In the dust transport model,
the settling velocity due to gravitational force is formulated and also the dif-
fusion coefficient of dust particles in the flow medium.

In chapter 4 we focus on the numerical method to approximate the dust
transport model. The Galerking finite element method is introduced for the
spatial discretization of the PDEs while finite difference methods are used
for the temporal discretization. However, in case of convection dominated
flows, the stabilization method like the variational multi-scale method, GLS
and SGS are required in order to eliminate the oscillations. These stabilized
finite element formulations yield a globally stable solution but if there exist
a large gradient of the solution, local instabilities could still appear and pol-
lute the solution. The so-called shock capturing method is adopted in our
problem.

In chapter 5 we implement our model in FEMUSS, which is a multiphysics
simulation software written in Fortran 2003. Specific test cases are designed
in order to verify the effectiveness of the code and model. Numerical tests
show that our model works very well and gives more accurate solutions com-
pared to those found in the literature. In order to show the advantage of
numerical methods, in chapter 6 we present real application of our model
trying to simulate the dust transport in a large wind tunnel,which shows the
advantages of numerical simulation.

We close the work with chapter 7, where conclusions and further possible
research lines are summarized.
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Chapter 2

Dust transport in fluids

Dust particles usually appear as many other natural phenomena, coupled
with and affected by other physical field. Partial differential equations make
it possible to describe the corresponding problem in terms of conservation,of
mass, momentum or energy, which provide a way for mathematical mod-
eling. On the other hand, we notice especially the negative effect of dust
particles on human health and environments, and explain how they cause
severe harm to the economy and environment.

2.1 Coupled problem

In a real world, many physical problems are coupled, meaning the solution
of one problem could be the parameter of another one. For example, the
coupled convection-diffusion and Navier-Stokes equations has many appli-
cations. In bioscience and biology, the proteins (actin filament in cells and
hemoglobin in bloods) are usually generated from small monomers (amino
acid and polysaccharides), but these substances are convected by fluids in
the living body[5]. So the convection-diffusion equation is adopted in order
to describe the mass conservation during this process and also the Navier-
Stokes equations are also introduced for the advection velocity field. Besides,
in some circumstances, the Navier-Stokes problem that model the convec-
tive part of the problem is conditioned by the amount of substances, and in
the other way around, substances are convected by the underlying Navier-
Stokes problem.

Many physical phenomena are governed by PDEs, and these equations can
be approximately solved by finite element methods, which results in a sparse
nonlinear/linear system of equations to be solved via linear algebra. In fluid
mechanics, the flow could present complex patterns when different condi-
tions are applied. In most cases, we are interested in incompressible flow,
with the Mach number smaller than 0.3.
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2.2 Adverse effects of dust

Numerous factors may contribute to the effect of dust on human health and
the environment [6] . Vehicles emit gases harmful to plants, especially nitro-
gen oxides and ethylene, and also oil droplets and solid particles, including
those containing lead. Further particles are derived from abrasion of tyres,
brake linings and clutch plates, and the road surface. Air movement over
central reserves is highly turbulent and the effect on plants of turbulent wind,
and of spray from wet road surfaces, may be exacerbated by the presence of
suspended material[7]. Leaves of plants on central reserves of roads with
high traffic density are covered with black deposits. The possible effects are
discussed as below.

2.2.1 Health effects

Dust particles in the PM10 size range are commonly present in air and may
be drawn into the body with every breath. For instance, in the lungs dust
can have a direct physical effect or even be absorbed into blood; airborne
particles, not only the PM10 fraction, may also be deposited in mouth, throat
or nose and be ingested[8].

Dust can cause extreme damage to human health, but recent epidemiological
research suggests that there is no threshold at which health effects do not
occur[9]. Precisely, the health effects include[10]:

• Toxic effects by absorption of the toxic material into the blood, such as
heavy metal elements like lead, cadmium and zinc.

• Allergic or hypersensitivity effects, e.g. some woods, flour grains and
chemicals can be blown by air wind and finally cause damage to special
populations.

• Bacterial and fungal infections from live organisms.

• Fibrosis and cancer, e.g. asbestos, quartz and chromates.

• Increased respiratory symptoms, aggravation of asthma and premature
death. The risks are highest for sensitive groups such as the elderly and
children.

In fact, all people are continuously exposed to some harmful extent except in
special filtered environments. Exposure may be higher in urban and indus-
trial areas due to increased number of sources. However, high levels may
also occur in natural environments. There are many factors which may affect
the health effects arising from exposure to dust[11]:

• The chemical composition and physical properties of the particles.

• The mass concentration of the airborne particles.
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• The size of the particles (smaller particles may be associated with more
adverse effects because they can be inhaled more deeply into the lungs).

• The duration of exposure (short or long term).

Knowing these factors, which play an important role in controlling the effect
of dust particles, we shall see in next chapter how our simulation could show
the concentration and lifespan of dust in a given domain.

2.2.2 Environmental effects

Dust particles in the air affect both the quality of the air and visibility[11].
Once the particulate matter float in the air, it generally will take a long time
to settle[12] ,floating in the air as shown in figure 2.1. This happens espe-
cially for very fine and light dust such as PM10 and PM2.5, which are easily
entrained into the air by wind or disturbances[13]. In a late stage, chemical
changes may occur, as may reactions with other substances, depending on
the composition of the particles[14]. The particulates may be washed from
the air by rain or snow. When they settle on land they may settle perma-
nently or be activated again.

FIGURE 2.1: Effects of dust
particles on the environment

PM10 may affect animals in the same way as it affects humans. Particles
in general, not specially PM10 or PM2.5, affect the aesthetics and utility of
areas through visibility reduction and may affect buildings and vegetation.
The specific effect of particles depends on their compositions, concentration
and presence of other pollutants such as acid forming gases[15].
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Chapter 3

Mathematical Modeling of particle
transport

In this chapter we discuss existing analytical methods developed to simu-
late the dust concentration in the atmosphere. However, analytical solutions
of PDEs are limited to specific boundary conditions, and in order to have a
model that can be expanded to any dust dynamics, we design a new mathe-
matical model by coupling the transient convection-diffusion-reaction equa-
tion(TCDR) and Navier-Stokes equations, whose boundary conditions are
flexible. Considering the effect of gravitational force, the dust deposition ve-
locity is introduced to modify the convection terms in TCDR equation.

3.1 Analytical modeling

Due to the complexity of the problem itself,traditional methods trying to give
analytical solutions are based on many simplifications or assumptions. We
are going to introduce two models as a starting point of our model.

3.1.1 Gillette and Goodwin’s model

One of the original studies on the particle concentration in the atmosphere is
proposed by Gillette and Goodwin[16] who used an Eulerian Pasquill equa-
tion[17] as governing equation for the process:

∂c

∂t
+∇ · (ca) = ∇ · (D∇c)−wt · ∇c (3.1)

where c(x, y, z, t) is the mean concentration of dust particles such as sand or
soil aerosol; a is the advection velocity of the wind or fluids;wt is the settling
velocity arising from the balance of forces acting on the particles; D(x, y, z) is
the spatial diffusion tensor.

Assuming a steady-state condition and the homogeneity of c in the x and y
directions, Gillette and Goodwin finally simplified the model as a differential



Chapter 3. Mathematical Modeling of particle transport 8

equation in 1D,
∂

∂z
(Dz

∂c

∂z
)− w∂c

∂z
= 0 (3.2)

where wt is the settling velocity in z−direction; Dz is the diffusivity, Dz =
u∗kz (k is the von Karman constant). The equation can be solved after inte-
gration twice as, 

c(z) = c(z0)( z
z0

)−ξ

limz→∞ c(z) = 0

c(z)|z=z0 = constant
(3.3)

where z0 is the roughness height and define ξ = wt

ku∗
. Eq.3.3 is almost the first

attempt to give analytical solution of the particle settling in fluids. However,
this is not accurate enough due to over-simplified assumptions. For example,
in a real case, the convection field is unsteady over time and the concentration
rarely homogeneous in the x and y directions.

3.1.2 Hassan and Eltayeb’s model

Hassan and Eltayeb[18] proposed a model according to the Eulerian diffu-
sion equation of Pasquill[17], Eq.3.1. Hassan and Eltayed made assumptions
based primarily on the data from dust transport experiments in wind tunnel,
and they simplified Eq.3.1 but avoided the limitation of Gillette and Good-
win’s model, resulting in a model that still could be solved analytically,

U
∂c

∂x
=

∂

∂z
(Dz

∂c

∂z
)− wt

∂c

∂z
(3.4)

where U is the steady velocity along the streamline depending on the height
z only (U(z) = βzm with β and m constants); Dz is again the diffusion co-
efficient in z−direction; w is the settling velocity. Now it is assumed that c
depends on x and z. This problem is defined in the simplified computational
domain given as
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FIGURE 3.1: Computational domain for the dust model

where the bottom is the land surface; the left is upwind edge; the right is
the downwind edge. In real case, the top and left edge can be infinite, but
with appropriate boundary condition, we can a certain domain, well-defined.
We will see that in the coming sessions, how the boundary conditions are
assigned and the corresponding analytical or numerical solutions are derived
from the literature.

It is true that Eq.3.4 could be solved analytically but specific boundary con-
ditions are necessary, which help transform the Partial Differential Equation
into an Ordinary Differential Equation. Hassan and Eltayeb[18, 19] specified
two types of boundary conditions for which the Partial Differential Equation
could be solved. The first group of boundary conditions is,

c(0, z) = F (z)

c(∞, z) = 0.0

c(x,∞) = 0.0

(3.5)

These boundary conditions have specific means in real cases: the concentra-
tion near the surface has to be fixed with a function F (z), and it approaches
zero in far downwind and infinite heights in the atmosphere. With the pre-
vious boundary conditions, the analytical solution is similar to Eq.3.3, with a
slight modification of the exponent, assuming that below z0 there is a restric-
tion placed on the concentration,{

c(z) = c(z0)( z0
z

)ν if z ≥ z0

c(z) = 0 if z < z0

(3.6)

where define the coefficient ν = wt

λ(m+1)
; λ and m are coefficients too. This

solution means that the concentration profile decays away from the bottom
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surface towards zero as increasing height in the atmosphere, but noting that
this case represents the diffusion of a decaying concentration profile with no
other addition sources or sinks.

At the end of the paper, Hassan and Eltayeb[18] mentioned that their col-
leagues have suggested to obtaining the solution with the following bound-
ary conditions: 

c(0, z) = 0.0

c(x,∞) = 0.0

c(x, 0) = F (x)

(3.7)

In this case, the first condition represents that there is no upwind dust con-
centrations, the second condition means at infinite heights the dust is zero,
and the last implies concentration on land surface is a function of streamline
distance. Eltayeb and Hassan[19] solved this problem after a Laplace trans-
form of the boundary conditions,

c(0, Z) = 0.0

c(X,∞) = 0.0

c(X,Z0) = c0g(X)

(3.8)

where X and Z are transformed variables defined as

Z = z(m+1)/2 X =
λ(m+ 1)2

4β
x (3.9)

where g(X) is a boundary concentration profile function and the other vari-
ables are as defined before. A complete analytical Laplace transform is pos-
sible for g(X) = 1,

c(X,Z) = c0(
Z0

Z
)2ν Γ(ν, Z2/4X)

Γ(ν)
Z0 → 0 (3.10)

where Γ(ν) is the Gamma function and Γ(ν, Z2/4X) is the incomplete Gamma
function.

3.1.3 Roney and White’ model

Roney and White[20] studied the Eltayeb and Hessan’s[19] model, and they
found that the solution of Eltayeb and Hassan appears to be inappropriate
for PM10 particles as the constant parameter ν defined previously in Eq.3.6
becomes very small (ν ≈ 0.005), giving large Γ values when evaluated in the
Gamma Function Γ(ν) ≈ 200. Likewise, the Incomplete Gamma Function
Γ(ν, Z2/4X) is small except for when Z = 0, where it reverts to the Gamma
function. Thus, the ratio of the Incomplete Gamma Function to the Gamma
Function is always less than one for this case, except when Z = 0. This ratio
creates a large difference between the concentrations as z → 0 and z = 0.01.
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The non-physical result thus seems to be an artifact of the Gamma Function
solutions, which are highly non-linear at small values of the independent
variable.

Roney and White thus proposed a solution of the form which could circum-
vent the small particle problem in the analytical solution[20] ,

c(X,Z) = c0(
Z0

Z
)2ν Γ(ν, Z2/4X)

Γ(ν, Z2
0/4X)

(3.11)

where we could see that Γ(ν) is replace by Γ(ν, Z2
0/4X) in the denominator,

and also this solution requires Z ≥ Z0. Although the solution is no longer
an exact solution to the partial differential equation, it represents a good ap-
proximation for those cases in which Z0 and ν are small.

A brief summary, we can have the analytical solution in a 2D domain for the
dust concentration, but this solution is limit to very specific cases. In order
to have a much general solution to this problem, we are going to analyze the
erosion mechanism from the very beginning, explain the concept of threshold
friction velocity, horizontal saltation flux and vertical dust flux, and give the
numerical solution to the mathematical model.

3.2 Threshold velocity

3.2.1 Modeling of threshold velocity

The threshold velocity, u∗t, is the friction velocity at which wind erosion is ini-
tiated. The value of u∗t for specific particles depend heavily on many factors
such as soil texture, soil salt content, surface crust, roughness and the dis-
tribution of vegetation.It can be expressed as a function of particle size, but
this is only for idealized soils. There are many theories to formulate u∗t and
the the particle size, derived for uniform and spherical particles spreading
loosely over a dry and bare surface[21, 22, 23]. Bagnold[21] firstly obtained
a simple expression for u∗t taking into account the force balance between the
aerodynamic drag and the gravity force, and he found that u∗t ∝ d1/2, where
d is the diameter of the particle. Bagnold’s expression works very well for
particle sizes larger than 100µm but fails to predict the minimum of u∗t when
d is at around 75µm, and also fails to show the subsequent increase of u∗t
with decreasing particle size. Greeley and Iversen[22] considered the cohe-
sive force and aerodynamic lift, but not the aerodynamic drag and gravity
force, and further found that

u∗t = AB
√
σpgdF (Re∗t)G(d) (3.12)
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where AB, the dimensionless threshold friction velocity, is a coefficient de-
pending on the Reynolds number ,Re∗t; F is a function of the Reynolds num-
ber for specific particle at threshold friction velocity; G is a function of the
diameter d; σp is the particle to air density ratio; g is the gravitational accel-
eration. These parameters are all estimated from tunnel experiments. This
new expression overcomes the drawback arising from Bagnold’s expression
and fits much better u∗t in a large range of the particle diameter d. How-
ever, the two empirical functions F and G have complex and unreasonable
expressions, possibly because of a misfit of G(d).

Based on previous work, Shao and Lu[24] take into account the effect of inter-
particle cohesion on u∗t and give the following explicit expression for the
threshold friction velocity,

u∗t =

√
AN(σpgd+

γ

ρpd
) (3.13)

where AN explicitly accounts for the effects of inter-particle cohesion with
value around 0.0123; γ is a constant with value around 3 × 10−4kg · s−2; ρp
is the density of the particle. This new formulation is obtained for spherical
particles loosely spread over a dry and bare surface. However, the real par-
ticles are not identically smooth and spherical. Other types of inter-particle
forces such as capillary and Coulomb forces relying strongly on the moisture
and chemical agents among particles are not accurately approximated.To ac-
count for the effects of surface roughness, soil moisture and aggregation on
u∗t, the threshold friction velocity is corrected in the following form

u∗t = u∗t0R(λ)H(ω)M (3.14)

where R, H and M are the correction functions describing the influence of
roughness element, soil moisture and soil surface aggregation and crust-
ing[25]. λ is the frontal area index of the surface roughness elements(a mea-
sure of surface cover) and ω is the volumetric fractional soil moisture content
on the particle surface. According to their physical means, H(ω) function
satisfies H(ω) = 1 when ω = 0 and H(ω)→∞ as ω becomes large. Likewise,
R(λ) = 1 when λ = 0(no cover) and R(λ) → ∞(extensive cover) when λ
grows. Thus, these functions both act to increase u∗t as wetness or surface
cover increase.

3.2.2 Correction factor for soil moisture

Soil moisture strongly affects the threshold friction velocity since it enhances
soil cohesion. Fecan et al[26] attempted to parameterize the influence of
soil moisture as a function of clay content through fitting the equation with
the experimental data for various soils. Y. Shao and E. Jung[1] investigated
Fecan’s parameterization for several kinds of soil texture using observation
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data and they finally expressed the correction function as

H(ω) =

{
1, for ω ≤ ωr√

1 + a(ω − ωr)b, for ω > ωr
(3.15)

where ω is the volumetric soil moisture, a and b are constants that vary on the
soil texture, and ωr is the threshold soil moisture. Shao and Jung’s coefficients
fitted from experimental data for different soil types are listed in table 3.1. It
is clearly shown that the effect of moisture on threshold friction velocity can
vary significantly among soil types, but this could limit the application of this
formulation because we usually do not know the parameters for a specific
soil.

TABLE 3.1: The a, b, and ωr values in soil moisture correction
for different soil types

Sand Loamy
Sand

Sandy
Loam Loam Silt

Loam

Sandy
Clay
Loam

Clay
Loam

Sandy
Clay

Silty
Clay Clay

a 21.19 30.0 44.87 17.79 21.79 25.79 29.86 25.20 22.90 20.47
b 0.68 0.90 0.85 0.61 0.67 0.74 0.80 0.70 0.65 0.59
ωr 0.005 0.01 0.037 0.049 0.059 0.075 0.095 0.125 0.140 0.156

The disadvantages of previous experiment-based parameterization for mois-
ture correction was overcome by Shao[25], who proposed another correction
factor as exponential function, Eq.3.16. And later,this correction term was im-
proved by Zhao[27] et al considering different range of moisture proportion,
Eq.3.17, which is implemented in Haustein’s model[28].

H(ω) = exp(22.7ω) (3.16)

H(ω) =

{
exp(22.7ω), for ω ≤ 0.03

exp(95.3× ω − 2.03), otherwise
(3.17)

3.2.3 Correction factor for roughness

The roughness corrector is proposed in a double drag partition by Raupach et
al[29], considering the bare and vegetated surfaces independently. Actually,
it introduces a roughness density concerning the frontal area covered by the
non-erodible roughness elements present at the surface, given by

R(λ) = (1− σvmvλv)
1/2(1 +mvβvλv)

1/2(1− σbmbλb
1− fc

)1/2(1 +
βbmbλb
1− fc

)1/2 (3.18)
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where β is the ratio of the drag coefficient for a single roughness element to
that of the surface without roughness element; σ is the ratio of basal to frontal
area of the roughness elements; m, varying between 0 and 1, accounts for the
spatiotemporal variations of the stress of the underlying surface. They are
obtained for barren and vegetated surfaces separately. The suggested pa-
rameter values are that βv = 202, mv = 0.16 and σv = 1.45, βb = 90, mb = 0.5
and σb = 1. fv is the vegetated cover fraction(default =0 in our case, mean-
ing there is no vegetation). The roughness density, λ, is also calculated dif-
ferently for barren (λb) and vegetated surfaces (λv). These parameters vary
significantly with surface types and the spatial distribution of roughness ele-
ments. In the presence of vegetation, a straightforward parameterization for
λv is proposed by Shao et al[25] is

λv = −cλ ln(1− fv) (3.19)

where cλ is a coefficient accounting for the distribution and orientation of the
roughness element. The suggested value of cλ is 0.35, which is suitable for
stubble roughness. On the other hand, the roughness density on bare surface
arising from solid elements can be related to the geometrical fractional area
(fc) of the solid elements and of their shape factor (η). In a real application , it
is nearly impossible to derive the mathematical relation among these param-
eters, so only anecdotal data for λb are available from the literature[30, 28].
One possibility is to construct a database with general roughness densities for
bare sandy and gobi surfaces based on the measurement of Marticorena[31]
and relate them to the current model. Usually, suggested λb is 0.002 for sandy
desert and 0.15 for gobi desert. A satisfactory expression for M is not avail-
able at this stage and hence the values of M are temporarily set to 1 for all
soils[2].

Field observations have shown that increasing surface cover, or roughness, is
an effective technique to prevent wind erosion[32]. Non-erodible roughness
elements absorb part of the momentum transferred from the atmosphere to
the surface and reduce the shear force on mobile particles. These roughness
elements can either be vegetation(living or dead) or nonerodible soil frac-
tions(usually defined as dry aggregates with diameter ≥ 0.85mm). Two com-
monly used measures of are the vegetated cover fraction fv(viewed from the
above) and the bare roughness density λb.

3.3 Flux

One challenge in dust modeling is to predict the emission rate of particles in
all size groups. For this purpose, many efforts have been made to develop
physically sound yet simple schemes of dust emission rate.The main mech-
anism for dust emission is widely considered to be aggregate disintegration
and saltation bombardment. Based on this kind of emission mechanism, the
dust emission rate, the quality of the dust moving upward across the level
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near the surface per unit time and unit area, is measured by an equivalent
physical quantity, given by

F (di, ds) = α(di, ds)Q(di, ds) (3.20)

where F is vertical dust emission flux for the ith particle group of size di
generated by the saltation of particles of size ds, α is a coefficient depending
both on di and ds, Q is the horizontal saltation flux denoted as vertical inte-
gral of the streamwise saltating particle flux density with unit kg ·m−1 · t−1 .
Wind tunnel experiments give empirical expressions, showing that the order
of magnitude of α is 10−5m−1[25, 33]. The α coefficient considers the impact
of kinetic energy of saltation particles and the binding energy, ψ, of dust par-
ticles which are two quantities key to dust emission[34]. Unfortunately, ψ is
difficult to measure, which motivates us to find other parameterization.

3.3.1 Horizontal saltation flux

The horizontal saltation flux usually indicates the intensity of saltation. Mod-
els to estimate particulate matter emissions from windblown dust are gen-
erally based on the local wind speed, the threshold wind speed to initiate
erosion, and the soil texture of a given surface. However, precipitation, soil
crusting, and soil disturbance and dramatically change the threshold wind
speed and erosion potential of a surface, making modeling difficult[35]. Here
we could simply give the following parameterization for the horizontal salta-
tion flux.

1. Kawamura[36]
Kawamura was the first to explicitly introduce the threshold shear ve-
locity term, u∗t, into his transport model, which also used physical ar-
guments:

Q = Ckw
ρair
g

(u∗ − u∗t)(u∗ + u∗t)
2 (3.21)

where his original empirical constant of proportionality is Ckw = 2.78.
Horikawa[37] , based upon field data from experiments, suggested Ckw
is closer to 1.0. White[38] found Ckw = 2.61 fits much better for aeolian
transport on the mars in his evaluation of the applicability of Kawa-
mura’s model.

2. Owen(1964)[39]
Owen developed his model based upon arguments concerning the con-
centration and vertical distribution of saltating particles on the surface.
The horizontal sand flux has the following form,

Q =
ρair
g
u3
∗(1−

u2
∗t
u2
∗

)(Co1 + Co2
ws
u∗

) (3.22)
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where Co1 and Co2 have values of 0.25 and 0.33, respectively, and ws
is the particle fall velocity, which could be computed according to the
formulation developed by Chen[40].

3. Sorensen(2004)[41]
Sorensen developed an analytical model that incorporates physics sim-
ilar to those of the preceding models and accounts for particle saltation
rates and estimates of air-borne( and thus particle-borne ) shear stress,
following Owen[39], so that:

Q =
ρair
g
u3
∗(1− (

u∗t
u∗

)2)[Cs1 + Cs2(
u∗t
u∗

)2 + Cs3
u∗t
u∗

] (3.23)

However, the constants (like Cs1, Cs2 and Cs3) in this equation are sensi-
tive to particle size. Only a limit group of parameters is given according
to the wind tunnel experiment at different size of particle diameters[41],
so the drawback of this parameterization is obvious, we are unable to
expand it to any particle diameters.

4. Marticorena and Bergametti’s scheme[42].
The horizontal sand flux can be calculated using the saltation formula-
tion proposed by White

Q = CMB ·
ρair
g
· u3
∗ · (1 +

u∗t
u∗

) · (1− u∗t
u2
∗

) (3.24)

where the correction factor CMB which was used to adjust the saltation
flux according to experimental results was originally set to 2.61 follow-
ing the experimental results of White[38] but later revised to 1.0[43, 44].

5. Shao’s scheme
Shao proposed the sand transport formulation based on Owen’ model
with finally a dimensionless constant CShao that could vary from 1.8 to
3.1 but this constant is usually set to 2.45[45],

Q = CShao ·
ρair · u3

∗
g

· (1− u∗t
u∗

) (3.25)

3.3.2 Vertical dust flux

The vertical dust flux F is defined as the emitted dust mass concentration
per unit area per unit time(kg ·m−2 · t−1). It can be parameterized in terms
of the fact that vertical dust flux is related to horizontal sand flux. Numer-
ous attempts have been made to parameterize vertical dust flux through an
empirical method using data fitting or through a physically based method,
by considering balance of the volume saltated during dust emission process.
There are mainly two group of vertical dust flux expressions proposed by
different research groups. Here we will introduce both of them.
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1. Marticorena and Bergametti’s(MB) scheme[42].
In the MB scheme, the vertical and horizontal flux is related to the clay
content. Marticorena and Bergametti showed that when plotting the
mean ratio of total vertical flux to total horizontal flux with respect to
the clay content, there is a clear trend for soils that have clay less than
20%, and they proposed a linear fitting equation,

F = 100×Q× 10(0.134×Cc−6.0), Cc ≤ 20% (3.26)

where Cc is the presence of the clay content. Despite simplicity, the
weakness of the MB scheme is that its parameterization is not applica-
ble to soils that have more than 20% clay and other kind of soils, and
the physical processes are not involved in this parameterization.

2. Lu and Shao’s scheme[46].
According to Lu and Shao’s research, the dust emission rate is deter-
mined based on the volume of removal caused by saltating particles
when they strike the surface. By modeling the ploughing process of in-
dividual saltating particles with the assumption of an impact angle of a
saltating particle,assuming the striking angle α = 13◦, a simplified total
vertical dust flux equation can be expressed as

F =
Cαgfρb

2p
(0.24 + Cβu∗

√
ρp
p

)Q (3.27)

where p is the plastic pressure of the soil surface with unit Pa, which
means surface hardness, f is the fraction of dust contained in the vol-
ume, ρb and ρp are the bulk-soil and soil particle density, respectively,
and ρp/ρb is around 2.6. Cα and Cβ are constant, given by the following
range,

Cα ∈ [0.0002, 0.001]

Cβ ∈ [0.63, 2.09]

3. Shao’s 2004 Scheme[47].
Shao further proposed a new dust emission parameterization which
considers mainly two kind of dust emission mechanisms: aggregate
disintegration and saltation bombardment. The dust emissions from
saltation bombardment can be estimated by modeling the removed vol-
ume as in previous conclusion from Lu and Shao[46], and the aggregate
disintegration was newly parameterized[47] with the assumption that
aggregates disintegrate only when they strike the surface. By suppos-
ing that particles are divided into continuous I particle-size intervals,
he proposed a size-resolved dust emission. Shao[48] finally simplified
this approach and expressed this dust emission flux for particles of size
di by saltation of particles of size ds as

F (di, ds) = cY ηf [(1− γ) + γσp](1 + σm)
g

u2
∗
Q (3.28)
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where cY is a dimensionless coefficient, ηf is the mass fraction of the
dust particles having diameter less than 20µm contained in a unit of
soil mass, and the other notations are as described earlier(hereinafter
denoted as the S04 scheme).

For given soil texture and friction velocity, the model only requires the
estimate of σm to compute F .Lu and Shao[46] derived an expression
for the volume removed by an impacting saltation particle, Ω. if the
particle impact angle is set to 15◦, we have

Ω =
U2ds
β2

(0.24 + 0.21U

√
ρp
p

) (3.29)

where β =
√

2pds/m and p is the soil plastic pressure; m is the saltating
particle mass; ρp is the particle density; U is the particle impact velocity
and the impact angle is set to α = 15◦. Since mΩ = ρbΩ with ρb being
the soil density, U is around 10u∗ and ρp/ρb is around 2.6 (assuming
ρp = 2600kg ·m−3 and ρb = 1000kg ·m−3), we obtain[48]

σm = 12u2
∗
ρb
p

(1 + 14u∗

√
ρb
p

) (3.30)

ηf ∈ [3.2%, 72%] (3.31)

γ = exp[−(u∗ − u∗t)3] (3.32)

σp =
pm(di)

pf (di)
(3.33)

TABLE 3.2: Dimensionless coefficient cY and plastic pressure p
for different soil types

Sand Loam
Sandy
Clay
Loam

Silty
clay
loam

Clay

Plastic pressure(Pa) 5000 10000 10000 30000 50000
cY 5× 10−5 3× 10−5 5× 10−5 1× 10−5 1× 10−5

3.4 Mathematical model

3.4.1 Coupled model

We propose in the following a model coupling the transient-convection-diffusion
equation and the Navier-Stokes equations.
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Small and neutrally buoyant particles exactly have the same velocity to fluid
flow, and thus their dynamic behavior can be described by the unsteady con-
vection diffusion reaction equation mainly with convection velocity v and
diffusion, D. However, some particles whose density is different to that of
the fluid, either larger (e.g. mineral grains, sand storms) or smaller (e.g. gas
bubbles) will have an additional vertical velocity, wt, constituting another
part in the convection. This vertical velocity is called settling velocity here,
which is proportional to the density difference between the fluids and parti-
cles and to the particle geometry diameter, d.

ct + a · ∇c−∇ · (D∇c) + sc = f

c = cD on ΓD

n · (D∇c) = F on ΓN

(3.34)



vt + v · ∇v −∇ · (ν∇v) +∇p = b in Ω

∇ · v = 0 in Ω

v = vD on ΓD

−pn+ ν(n · ∇)v = t on ΓN

v(x, 0) = v0(x)

(3.35)

where the vector n denotes the unit outer normal to the boundary; F is the
vertical dust flux which has been analyzed in the previous section; s is the
reaction coefficient; f is the source term; a is the convection velocity includ-
ing fluid velocity and settling velocity, which we shall discuss more about
this in the next session. We could understand the physical phenomenon in
the following way: In a given region, assuming the particles have similar size
and density, the concentration on some boundaries have already been known
(Dirichlet boundary conditions on ΓD), and in some boundaries(Neumann
boundary conditions on ΓN ) such as the surface ground, the particles are
generated by the erosion process due to the fluid motion. Inside this region,
particles are convected with an advection velocity a and diffusion exists also
due to the gradient of the particle concentration. If there are no source and
no reaction in the problem, f and s can be 0.

On the other hand, the flow problem is given in Eq.3.35, where the vector
n again denotes the unit outer normal to the boundary; v is the flow veloc-
ity; b is the body force of the flow; vD is the given velocity on the Dirichlet
boundary; v0 is the initial status of the flow; ν is the kinematic viscosity and
p the kinematic pressure. It is also necessary to note that v, vD, v0 and b
are in vector form and ν is second-order tensor. The original Navier-Stokes
equations can be used to describe the motion of both compressible and in-
compressible flow. In our case, we choose the incompressible Navier-Stokes
equations which fit well for the current problem because in a natural region,
it is rare to have the flow (e.g. wind or water) whose Mach number is larger
than 0.3.
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Up to now, we have the coupled model for our physical problem. The cou-
pling is that the flow velocity is the condition for initiating the dust once the
friction velocity is large enough. Then the dust particle is convected by in-
tegrated the flow velocity and the dust settling velocity, which we will see
in the next section. Considering the techniques required to solve coupled
problems, we have two main kind of schemes. One is the monolithic or si-
multaneous scheme, in which we solve the equations associated to all the
problems in a single system,simultaneously. However, the monolithic ap-
proach sometimes has some disadvantages: a) the system of equations to be
solved could result in extremely large matrix after integrating all the equa-
tions; b) The system of equations to be solved can be ill-conditioned because
it involves different physical problems with different constitutive equation
laws and physical parameters; c) modularity is difficult to obtain since we
cannot couple independent pieces of software and assemble each problem
into a global matrix.

Another option is to take each of the problems to be solved independently.
The interaction with the other problems is treated as an external given term
which is iteratively communicated between the coupled systems. Advan-
tages for such scheme are as follows: a) customization, each field can be
treated with algorithms which are known to perform well for the isolated
problem; b) independent modeling, partitioned schemes facilitate the use of
of non-matching meshes (once used) ; c) software reuse, independent pieces
of software can be used to deal with each of the problems; d) modularity, each
physical problem can be packed in a software module, all implementations
for the particular problem are localized in its module. So we will explain
our finite element method to solve the equations independently based on the
idea of partitioned schemes in coming sessions.

3.4.2 Particle settling

Motion of the fluid could transport particles which are either more dense (
e.g. sand storm, mineral sediment) or less dense (e.g. bubbles) than the fluid.
Intuitively we regard the convection velocity a in Eq.3.34 is the same as the
flow velocity v, but this is not the fact. It is necessary to introduce the settling
velocity wt arising from the gravitational effect.

In order to estimate the expression for the settling velocity, we consider the
conservation of momentum in the vertical direction with three kind of act-
ing forces, i.e., weight, buoyancy and drag. With the assumptions given in
previous sections about the shape of the particle, we here again consider the
particle as solids with spherical diameter d and density ρp. The fluid density
is ρa. In a 3-D coordinate system with z being the negative gravity direction
(−ez), we have

Weight = −ρpg
π

6
d3ez
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Buoyancy = ρag
π

6
d3ez

Drag = −1

2
ρaCd

πd2

4
wt||wt||

Cd is the drag coefficient for the sphere and is predicted as a function of the
Reynolds number, i.e. Re = wtd

ν
, the conservation of vertical momentum is,

π

6
ρpd

3∂wt

∂t
=
π

6
(ρa − ρp)gd3ez −

π

8
ρaCdd

2wt||wt|| (3.36)

From now on, we shall consider how to solve Eq.3.36 for wt = [0, 0, wt]
T .

Let us consider following reasoning: suppose that a particle is originally
at rest (wt = 0). If ρp > ρa, the particle will start to accelerate downward
(∂wt/∂t < 0). When the value of wt increases, the corresponding drag forces
increases too but acts in an opposite direction. Eventually the drag force is
large enough to balance the weight force and buoyancy force, making the
acceleration, ∂wt/∂t < 0, equals to 0 and wt becomes constant. The finally
constant value of wt is called terminal velocity. Typically the time required
to reach this constant velocity is very short compared with the time scale we
are analyzing. So we can solve Eq.3.36 for wt by setting ∂wt/∂t = 0, and the
terminal velocity can be estimated as a function of particle size, given as

wt = −

√
4(ρp − ρa)gd

3ρaCd
(3.37)

whereCd is the drag coefficient predicted as a empirical function of the Reynolds
number, Re = wtd

ν

Cd =

{
24
Re

+ 3√
Re

+ 0.34 if Re < 1× 104

24
Re

if Re < 1 creeping flow
(3.38)

From Eq.3.37 and Eq.3.38, we could find that the strategy to compute the
particle settling velocity unavoidably requires to solve a non-linear equation.
This can be done through the fixed point method and iterated until given
accuracy is reached. After we have the settling velocity is known, the final
version of the convection velocity is

a =

 v1

v2

v3

+

 0
0
wt


where (v1, v2, v3)T is the component of the flow velocity v.
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3.4.3 Particle diffusion

If the fluid flow is in a low Reynolds number, the diffusion of particles could
be estimated through the diffusion of dissolved particles which heavily de-
pend on the Brownian motion of the fluid molecules. Based on the random
walk model in which the motion and kinetics of the suspended particles re-
sult from the impact by the fluid molecule, the diffusion coefficient , D, is
given by the Stokes-Einstein equation[49],

D =
kT

6πµr
(3.39)

where T is the absolute temperature; k is the Boltzmann constant, k = 1.381×
10−23J/K; r is the radius of the particle; µ is the dynamic viscosity, µ = ν×ρa.

In turbulent flow with a relatively large Reynolds number, the velocity is suf-
ficiently rapid to maintain a uniform particle quantity, keeping the suspen-
sion of particles, although there are still some particles losing due to settling
effect on the boundary. We could, for simplification, assume the diffusion co-
efficients for particles in this case to be the same as those dissolved particles
in low Reynolds number, which would not affect our model too much.
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Chapter 4

Numerical approximation

In this chapter we are trying to solve the PDEs we proposed to model the
dust dynamics in the atmosphere. The Galerking finite element method is
used for spatial discretization of the PDEs, while finite difference methods
is used for temporal discretization. However, in case of convection domi-
nated case, stabilization methods like variational multi-scale, GLS and SGS
are required in order to eliminate the oscillations. These stabilized finite ele-
ment formulations yield a globally stable solution but it is still possible that
in some regions the concentration has very large gradient, local instabilities
may appear and pollute the solution; the so-called shock capturing method
is introduced in our problem.

4.1 Trial solution and weighting functions

In order to obtain the weak, or variational, form of Eq.3.34 and Eq.3.35, it is
necessary to define two classes of functions: the test functions and the trial
solutions. Functional spaces are introduced based on the standard Galerkin
finite element discretization.

Let L2(Ω) be the space of square integrable functions in the domain. The first
class of functions, denoted by V , including test functions and all functions
which are square integrable, have square integrable first derivatives over the
whole computational domain Ωd(superscript d meaning the number of di-
mension), and vanish on the Dirichlet boundary, ΓD. V is defined,

V = {ω ∈ H(Ω)|ω = 0 on ΓD} (4.1)

whereH is a Sobolev space, defined according toL2(Ω) the space of functions
which are square integrable over the computational domain Ω,

H(Ω) = {v ∈ L2(Ω)| ∂v
∂xi
∈ L2(Ω) i = 1, · · ·nd}

where nd is the number of dimension.
Another set of functions is the trial solution space, denoted by S. This set
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of functions are definite similar to the test functions except that they are re-
quired to satisfy the Dirichlet conditions on ΓD:

S = {u ∈ H(Ω)|u = uD on ΓD} ≡ V + {ūD} (4.2)

where ūD is any function in H(Ω) fulfilling the Dirichlet boundary, i.e. such
that uD = ūD on ΓD. So S can be regarded as of a translation of V and is
thus the so-called affine space. In case of homogenous boundary conditions,
uD = 0, trial and test spaces coincide, V = S.

Finally, we have to define the space of function,Q, for the pressure, which are
required to be square-integrable. Because the collections V , S and Q involve
infinite number of functions, in the finite element method, they are approxi-
mated by a finite-dimensional subsets obtained by replacing themselves with
finite dimensional subspaces, denoted by Vh, Sh and Qh respectively. These
subspace functions are defined through low-degree polynomials on small el-
ements discretized from the original computational domain Ω.

4.2 Discretization of TCDR equation

In order to explain the numerical procedure to solve the TCDR equation, we
introduce some notation. The symbol < ·, · > means the integral of product
of two functions, including the duality pairing, and (·, ·) denotes the L2(Ω)
inner product. The variational form of the problem in Eq3.34 can be deduced
through multiplying by a test function v ∈ V ,

(v,
∂c

∂t
)+ < v,L(c) >=< v, f > ∀v ∈ V (4.3)

and integration by parts, the variational problem becomes: find c ∈ S such
that

(v,
∂c

∂t
) +B(c, v) =< v, f > +(v, F )ΓN

∀v ∈ V (4.4)

with the operator
L(c) = a · ∇c−∇ · (D∇c) + sc

B(c, v) = (D∇c,∇v) + (a · ∇c, v) + s(c, v)

and with approximate boundary conditions and initial conditions.

4.2.1 The Galerkin finite element discretization

The finite element approximation for the continuous variational problem in
Eq.4.4 can be done with the standard Galerkin method. Let us consider
a finite element partition {Ωe}nel

e=1 of the original computational domain Ω,
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where h is the characteristic diameter for the partitioned elemental domain
Ωe. Denote Sh the associated finite element space to approximate S and
the test function space Vh including finite dimensional piecewise polynomial
space.The discretized variational problem becomes,

(vh,
∂ch
∂t

) +B(ch, vh) =< vh, f > +(vh, F )ΓN
∀vh ∈ Vh (4.5)

again together with approximate initial conditions and boundary conditions.
However, when this Galerkin method is applied to the case in which D is
small, nodal oscillations may appear due to the lack of diffusion in discretized
formulation in a convection dominant case.

4.2.2 Temporal discretization

Finite difference schemes are the most common method for time discretiza-
tion, for example, the θ-family method,Runge-Kutta methods and Padé ap-
proximation. Here for simplification,we adopt the θ-family methods which
is widely used for integrating 1st-order differential equations. This is a single
step method,meaning the solution cn+1

h of the problem at time tn+1 = tn + ∆t
is determined by that at time tn:

cn+1
h − cnh
4t

= θ
∂cn+1

h

∂t
+ (1− θ)∂c

n
h

∂t
+O((1/2− θ)4t,4t2)

neglecting the truncation errors,

4ch
4t
− θ∂4ch

∂t
=
∂cnh
∂t

where 4ch = cn+1
h − cnh (4.6)

Replacing ∂ch
∂t

in equation 4.4, the temporal-discretized scheme is

(vh,
4ch
4t

) + θB(4ch, vh) = −B(cnh, vh)+ < vh, θf
n+1 + (1− θ)fn >

+(vh, θF
n+1 + (1− θ)F n)ΓN

∀vh ∈ Vh
(4.7)

In explicit form,

θB(cn+1
h , vh) + (vh,

1

4t
cn+1
h )︸ ︷︷ ︸

added reaction term

=< vh, θf
n+1 + (1− θ)fn > −(1− θ)B(cnh, vh)

+(vh,
1

4t
cnh) + (vh, θF

n+1 + (1− θ)F n)ΓN
∀vh ∈ Vh

(4.8)
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After temporal discretization, we reinterpret the TCDR equation as steady
convection-diffusion-reaction equation.The only difference is that the reac-
tion coefficient is modified considering the temporal discretization. In this
case, we get the advantages that most stabilization methods for solving steady
problem could be adopted here. Several methods could be derived from dif-
ferent values of the θ parameter.The solution is conditionally stable if θ < 1/2.
On the other hand, the solution is unconditionally stable if θ ≥ 1/2, for exam-
ple, Backward Euler: θ = 1, Galerkin: θ = 2/3, and Crank-Nicolson: θ = 1/2
are the most usual ones. Among these methods, Crank-Nicolson is the only
method with second-order accuracy.

4.3 Stabilization techniques for TCDR equation

Previous discretization procedures provide very good approximation to the
original TCDR equation, Eq.3.34 when diffusion is relatively large. How-
ever, the temporal discretization formulation Eq.4.7 does not consider the
stabilization technique. Here the general explanation of stabilized technique
is briefly described.

Classical methods which could stabilize the convective term in a consistent
manner are summarized in Ref.[50] including the Streamline-upwind/Galerkin
method[51], the Galerkin least-squares method[52], and the Subgrid scale
method [53, 54]. These methods ensure that the solution of the differential
equation and the weak form have the same solution. In fact, all these stabi-
lized methods can be discussed in a consistent manner by adding the follow-
ing term to the L.H.S. of the weak form of Eq.4.7:

r(ch, vh) =

nelement∑
e=1

∫
Ωe

P(vh)τchR(4ch)dΩ (4.9)

where R(4ch) is the residual, defined as

R(4ch) :=
4ch
4t
− θ∂4ch

∂t
− ∂cnh

∂t
(4.10)

and τc is the stabilization parameter (also called intrinsic time) with dimen-
sion of time; P(vh) is a certain operator applied to the test function;R(4ch) is
the residual of the differential equation. So the consistently stabilized weak
form of the temporal discretized version is,

(vh,
4ch
4t

) + θB(4ch, vh) +

nelement∑
e=1

(τchP(vh),R(4ch))︸ ︷︷ ︸
Stabilization term

= −B(cnh, vh)

+ < vh, θf
n+1 + (1− θ)fn > +(vh, θF

n+1 + (1− θ)F n)ΓN
∀vh ∈ Vh

(4.11)
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We see that in Eq.4.11, the stabilization term is added to the Galerkin weak
form. In case of a convection dominated problem in which the non-dimensional
Péclet number (Pe = |a|h

2D
) could be very large, but with the implementation

of stabilization technique, a globally stable solution is possible.

4.3.1 The Streamline Upwind Petrov Galerkin method

The original SUPG method was designed for solving the steady convection-
diffusion equation as a method to eliminate nodal oscillations when the prob-
lem is convection-dominated and discretized by the classical Galerkin ap-
proximation. It has been known that these oscillations could be avoided by
adding more numerical diffusion using the centered finite difference meth-
ods. The idea of the first Streamline-Upwind method was formulated by
adding an artificial diffusion to stabilize the problem but this method could
not provide a consistent formulation and also introduces too much crosswind
diffusion. So the SUPG method was designed based on this idea, yielding
better results and introducing less crosswind diffusion, which enables SUPG
method to become a popular method, being widely used up to now.

The SUPG stabilization consists in taking the perturbation operator P as

P(vh) := (a · ∇)vh (4.12)

The weak form for the SUPG method can be obtained after substitution of the
perturbation operator P(vh) from Eq.4.12 to Eq.4.11. It remains here to de-
fine the stabilization parameter which is another important part in the SUPG
method. We could take the stabilization parameter as,

τch =
αh

2||a||
(4.13)

where
α(Pe) = coth(Pe)− 1

Pe

4.3.2 The Galerkin Least Square method

In the GLS method, the previous temporal discretization analysis is usually
a necessary procedure. This GLS stabilization introduces the perturbation
operator P in strong form which is affected by the temporal discretization as
follows,

P(vh) :=
vh
θ4t

+ L(vh) = a · ∇vh︸ ︷︷ ︸
SUPG

+ (s+
1

θ4t
)vh︸ ︷︷ ︸

Galerkin

− ∇ · (D∇vh)︸ ︷︷ ︸
0 in linear elements

(4.14)
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From the practical point of view, there is no major difference between the
SUPG and the GLS methods. We can see from Eq.4.14 that the first term is
the SUPG weighting,the last term is zero if linear elements are used. With
these terms added, the instabilities arising from the Galerkin discretization
are slightly amplified in GLS compared to SUPG, but this problem could be
overcome in by the simplest SGS method which will be discussed in the next
session.

4.3.3 The variational multi-scale stabilization

Hughes[53] first introduced the subgrid scale method,which is widely used.
One of the idea that led to the SGS method is probably due to Douglas and
Wang[55] for solving the Stokes problem, where they used an equal velocity-
pressure interpolation space with a stabilized finite element method similar
to the GLS method. The only difference is that the SGS method proposed
takes the minus of the adjoint of the operator in GLS method. The basic
idea of the general method is to decompose the unknown c into a component
ch ∈ Sh which can be resolved by the finite element space and the remainder
that is called the subgrid scale(SGS) component c̃ ∈ S̃ which is required to be
approximated by a particular numerical formulation. The solution spaces Sh
and S̃ are such that S = Sh ⊕ S̃ . Consistently, the approximation spaces are
such that V = Vh ⊕ Ṽ .

The variational problem could be split as,

(vh,
∂ch
∂t

+
∂c̃

∂t
) +B(ch, vh) +B(c̃, vh) =< vh, f > +(vh, F )ΓN

∀vh ∈ Vh (4.15)

(ṽ,
∂ch
∂t

+
∂c̃

∂t
) +B(ch, ṽ) +B(c̃, ṽ) =< ṽ, f > +(ṽ, F )ΓN

∀ṽ ∈ Ṽ (4.16)

At this stage the objective is to approximate the subgrid scale solution in
order to end up with a problem that could be solved with the finite element
scale independently. After integration by parts for Eq.4.15 we shall obtain,

(vh,
∂ch
∂t

+
∂c̃

∂t
) +B(ch, vh)+ < c̃, L∗(vh) >=< vh, f > +(vh, F )ΓN

∀vh ∈ Vh
(4.17)

(ṽ,
∂ch
∂t

+
∂c̃

∂t
)+ < L(ch), ṽ > + < L(c̃), ṽ >=< ṽ, f > ∀ṽ ∈ Ṽ (4.18)

Here we adopt the adjoint operator L∗(·) of the operator L(·). Formally, the
adjoint operator is defined as < v,L(c) >=< c, L∗(v) >. The duality property
might involve the inter-element jump terms when finite element functions
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are considered, so we assume that the sub-scale solution vanishes at the ele-
ment boundaries,i.e.,

< c̃, L∗(vh) >≈
nelement∑
e=1

(c̃, L∗(vh)) ≡ (c̃, L∗(vh))h (4.19)

< ṽ, L(ch) >≈
nelement∑
e=1

(ṽ,L(ch)) ≡ (ṽ,L(ch))h (4.20)

These approximations imply that jumps of derivatives of finite elements func-
tions on element edges are neglected.

Another assumption which is the most important part, is to approximate the
sub-scales since they cannot be represented by the finite element mesh. So
we again introduce a stabilization parameter τch , such that,

< ṽ,L(c̃) >≈ τ−1
ch

(ṽ, c̃) with τ−1
ch

= c1
D

h2
+ c2
|a|
h

+ c3s (4.21)

where c1,c2 and c3 are numerical parameters; discussions about the deriva-
tion of these formulation can be found in Ref.[50]. We could rewrite the split
equation in the following way,

(vh,
∂ch
∂t

+
∂c̃

∂t
) +B(ch, vh) + (c̃, L∗(vh))h =< vh, f > +(vh, F )ΓN

∀vh ∈ Vh
(4.22)

(ṽ,
∂ch
∂t

+
∂c̃

∂t
) + (ṽ,L(ch))h + τ−1

ch
(ṽ, c̃) =< ṽ, f > ∀ṽ ∈ Ṽh (4.23)

Note that in Eq.4.23 the values of c̃ on the element boundaries are neglected.
Intuitively, it is necessary to solve for c̃ in oder to have the final solution ch,
but c̃ is unknown. However, rather than solving for c̃, we could give a closed-
form expression according to Eq.4.23 and substitute it into Eq.4.22. Denote P̃
the L2 projection onto the space of sub-scales; the equation used to solve for
the sub-grid scale can be formally expressed as,

P̃ [
∂c̃

∂t
+ τ−1

ch
c̃] = P̃ [f − ∂ch

∂t
− L(ch)] (4.24)

There are two main options for the choices of P̃ in order to construct the sub-
scale spaces. The first and the most common option in the literature is to take
the residual as the sub-scale spaces, and in this case, P̃ = I is the identity.

Another possibility is to make the sub-scales space orthogonal to the finite
element space; the basic idea is to make the sub-scale method activated in
regions where the solution cannot be resolved by the finite element space. In
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this case, the projection operator is defined as P̃ = P⊥ = I−Ph with Ph being
the projection on the finite element space. To simplify further the numerical
method, we make additional approximations within each element:

P⊥(f) ≈ 0 (4.25)

P⊥(∇ · (D∇ch)) ≈ 0 (4.26)

Eq.4.25 implies that f belongs to the finite element space Vh only or it is ap-
proximated by a finite element space. Refering to Eq.4.26 it simplifies the
implementation of the method. We do not neglect the orthogonal parts of
the convective term since this is the term that helps enhance the stability.
Moreover, we have the following equalities because ch is the solution on the
finite element space and the sub-scale space is orthogonal to the finite ele-
ment space:

P⊥(
∂ch
∂t

) = 0, P⊥(sch) = 0, (vh,
∂c̃

∂t
) = 0, (ṽ,

∂ch
∂t

) = 0 (4.27)

Finally we shall have the following simplified form for Eq.4.24,

∂c̃

∂t
+ τ−1

ch
c̃ = P⊥[−a · ∇ch] (4.28)

Eq.4.28 provides a way to approximate the sub-scale solution c̃, which could
be plugged in Eq.4.22. We could call the sub-scales dynamic if the temporal
derivative, ∂c̃

∂t
, is taken into account. And in order to track the sub-scales

in time a temporal discretization method, like the θ-method, could also be
adopted here. Otherwise, there is another possibility of tracking the sub-
scales in time by as asuming they are ”quasi-static”, meaning ∂c̃

∂t
≈ 0. Here, if

we use the quasi-static form,

(vh,
∂ch
∂t

)+B(ch, vh)+τch(P⊥(−a·∇ch),a·∇vh)h =< vh, f > +(vh, F )ΓN
∀vh ∈ Vh
(4.29)

After temporal discretization, the stabilized form is,

(vh,
4ch
4t

) + θB(4ch, vh) +

nelement∑
e=1

τch(P⊥(−an+θ · ∇cn+θ
h ),an+θ · ∇vh)︸ ︷︷ ︸

Stabilization term

= −B(cnh, vh)+ < vh, θf
n+1 + (1− θ)fn > +(vh, θF

n+1 + (1− θ)F n)ΓN
∀vh ∈ Vh
(4.30)
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Stability and convergence properties have been discussed in Ref.[56]. We
strongly favor the choice of the sub-scale spaces orthogonal to the finite ele-
ment space, and advantages of this formulation are as follows,

• Relationship between the temporal step size and mesh size are not re-
quired, which make it possible to use anisotropic space-time discretiza-
tion.

• Instabilities disappear for small temporal step size.

• τc is independent of the temporal step size.

With these advantages, we are going to use this variational multi-scale stabi-
lization method, Eq.4.30, for our problem in order to yield a stable solution.In
summary, the complete procedure for solving the TCDR equation is shown in
algorithm 1, where we follow the θ method for temporal discretization and
the Galerkin finite element method for spatial discretization. However, an
internal iteration appears just in case there exist any nonlinear coefficients.

Algorithm 1 Algorithm for solving the TCDR equation

1: for n = 0, ..., N − 1 do
2: i← 0
3: Initialize the unknown :

cn+1,i
h ← cnh

4: while not converged do
5:

• Compute the stabilization parameter:

τn+1
ch

= (c1
D

h2
+ c2
|an+1|
h

+ c3s)
−1

τnch = (c1
D

h2
+ c2
|an|
h

+ c3s)
−1

• Compute cn+1,i
h by solving:

(vh,
cn+1,i
h

4t
) + θB(cn+1,i

h , vh) + θτn+1
ch

(P⊥(−an+1 · ∇cn+1,i
h ),an+1 · ∇vh)

= (vh,
cnh
4t

)− (1− θ)B(cnh, vh)− (1− θ)τnch(P⊥(−an · ∇cnh),an · ∇vh)

+ < vh, θf
n+1 + (1− θ)fn > +(vh, θF

n+1 + (1− θ)F n)ΓN
∀vh ∈ Vh

6: Set up converged values :

cn+1
h ← cn+1,i

h
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4.4 Discretization of the Navier-Stokes equations

The Navier-Stokes equations are also approximated through the finite ele-
ment method, but before this, we shall summarize the main difficulties in-
volved in the numerical solution of incompressible flow problems.

The first difficulty is arising from the presence the non-symmetric and non-
linear convective term in Eq.3.35. Such problem could result in significant
difficulty in flow of high Reynolds number, which are convection dominated.
So the lack of numerical diffusion after the standard Galerkin formulation
will again cause the solution to be unstable. Stabilization techniques as men-
tioned in the previous section must be used to provide a stable finite element
solution at high Reynolds numbers.

Another complex part we have to tackle is the incompressibility condition,
which actually is the continuity equation by assuming the constant flow den-
sity. This incompressibility condition implies the velocity field must be diver-
gence free. On the other hand, the gradient of the pressure term works with
the aim of introducing an additional degree of freedom required to satisfy
the incompressibility condition. The pressure could adjust, immediately and
interactively, itself corresponding to the change of velocity field so as to meet
the divergence-free condition for the velocity. The pressure can be regarded
as a Lagrange multiplier of the incompressibility condition and coupled with
the velocity field.

4.4.1 Spatial discretization

Following a similar procedure as for the TCDR equation, the weak form of
the Navier-Stokes equations could be obtained after integration by parts, and
the variational problem becomes: find [v, p] ∈ S × Q, for all [w, q] ∈ V × Q
that{

(w, ∂tv) + (ν∇v,∇w) + (v · ∇v,w)− (p,∇ ·w) =< w, b > + < w, t >ΓN

(q,∇ · v) = 0

(4.31)
Let us introduce the following notations:

V = [vT , p]T W = [wT , q]T

,

L(V ) =

[
v · ∇v −∇(ν · ∇v) +∇p

∇ · v

]

B(V,W ) =

[
(ν∇v,∇w) + (v · ∇v,w)− (p,∇ ·w)

(q,∇ · v)

]
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M :=

[
Id×d 0d×1

01×d 0

]
G :=

[
b
0

]
where I is the identity matrix with d the number of dimension. After inte-
gration by parts, rewrite Eq.4.31 in the following form

(W,M∂tV ) +B(V,W ) =< W,G > (4.32)

We are also assuming t = 0 for simplification of the notation, but we will
introduce t in the final formulation.

The finite element approximation for this continuous problem requires first
the partition of the computational domain as {Ωe}nel

e=1 whose characteristic
length is denoted by h. So the weak form in Eq.4.31 can be approximated by
the Galerkin method in finite dimensional spaces: find Vh ∈ Sh × Qh, such
that for all Wh ∈ Vh ×Qh

(Wh,M∂tVh) + (Wh, L(Vh)) =< Wh, G > (4.33)

Eq.4.33 is the Galerkin finite element discretization in space, which is very
similar to the spatially discretized TCDR equation given in Eq.4.5. But apart
from being unstable in the convection dominant case, Eq.4.33 has also to fol-
low the inf-sup or Babuska-Brezzi condition[57], which requires to use the
mixed interpolation, i.e., different interpolation spaces for v and p, and veri-
fying

infqh∈Qh
supvh∈Sh

(qh,∇ · vh)
||qh||||vh||

≥ α > 0 (4.34)

for a constant α independent of h.
Once the temporal discretization based on the finite difference method is in-
troduced, the problem still suffers from different kinds of the instabilities
part of which have been noted in previous. As we have already known the
advantages of the variational multi-scale stabilization technique, we will in-
troduce this method as the only stabilization method for the Navier-Stokes
equations.

4.4.2 Temporal discretization

To track the transient response, the Navier-Stokes equations can be advanced
in time by suitable finite difference schemes, such as the θ family methods
introduced in the previous section. Note that a fully implicit method re-
quires the solution of a nonlinear algebraic system at each time step. Semi-
implicit methods in which the nonlinear convection term is treated explicitly
are sometimes preferred.
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4.5 Stabilization techniques for the Navier-Stokes
equations

The initial idea for the variational multi-scale form here is similar to that we
implemented in the TCDR equation. Firstly, let us decompose the continuous
trial solution spaces (S×Q) problem into two spaces which are orthogonal to
each other, (S×Q) = (Sh×Qh)⊕(S̃ ×Q̃), and (Sh×Qh)∩(S̃ ×Q̃) = 0, where
the space (Sh × Qh) is the finite element space and (S̃ × Q̃) is the sub-scale
space.

To solve the Navier-Stokes equations using the variational multi-scale method,
we could split the continuous problem in the following way,

V = Vh + Ṽ (4.35)

where V belongs to the finite element space and Ṽ belongs to the sub-scale
space.

Correspondingly, the space (V × Q) = (Vh × Qh) ⊕ (Ṽ × Q̃), and therefore
W = Wh + W̃ with W belonging to the finite element space and W̃ belonging
to the sub-scale space. The continuous problem now becomes,

On finite element space:

(Wh,M∂tVh) + (Wh,M∂tṼ ) +B(Vh,Wh) + (Wh, L(Ṽ ))h =< G,Wh > (4.36)

On the orthogonal sub-scale space:

(W̃ ,M∂tVh)+(W̃ ,M∂tṼ )+ < W̃ , L(Vh) > + < W̃ , L(Ṽ ) >=< G, W̃ > (4.37)

Considering the orthogonal property and also assuming G is directly on the
finite element space or could be approximated by a function in the finite ele-
ment space, the following equity holds,

(Wh,M∂tṼ ) = 0 (W̃ ,M∂tVh) = 0 < G, W̃ >= 0 (4.38)

The problems on finite element space and on sub-scale space have the fol-
lowing form, respectively,

(Wh,M∂tVh) +B(Vh,Wh) + (Wh, L(Ṽ ))h =< G,Wh > (4.39)

(W̃ ,M∂tṼ ) + (W̃ , L(Vh))h + (W̃ , L(Ṽ ))h =< G, W̃ > (4.40)
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On the finite element space, we could obtain the weak form through integra-
tion by parts:

(wh, ∂tvh) + (ν∇vh,∇wh) + (v · ∇vh,wh)− (ph,∇ ·wh)

+ν

nelement∑
e=1

[−(ṽ,∇2wh) + (ṽ,n · ∇wh)∂Ωe︸ ︷︷ ︸
0

]

+

nelement∑
e=1

[−(ṽ,v · ∇wh) + (ṽ,v · nwh)∂Ωe︸ ︷︷ ︸
0

]

−
∑
K

(p̃,∇ ·wh) =< b,wh >

(qh,∇ · vh)−
∑

K(∇qh, ṽ) + (qh,n · ṽ)∂Ωe︸ ︷︷ ︸
0

= 0

(4.41)

where we have already substituted the fact ∇ · (vh + ṽ) = 0 and have also
assumed that the sub-scale solutions vanish at the all element boundaries,
so terms involving integrals over these boundaries equal to 0 as it has been
noted in Eq.4.41. Our purpose is to solve for vh in Eq.4.41, but we have the
unknowns ṽ and p̃ which are necessary to be approximated on the sub-scale
spaces from,


(w̃, ∂tṽ)− (w̃,∇ · (ν∇ṽ)) + (w̃,v · ∇ṽ) + (w̃,∇p̃)

+(w̃, ∂tvh)− (w̃,∇ · (ν∇vh)) + (w̃,v · ∇vh)
+(w̃,∇ph) = < b, w̃ >

(q̃,∇ · ṽ) + (q̃,∇ · vh) = 0

(4.42)

So the problem we are solving could be understood as,

{
∂tṽh +∇ · (ν∇ṽ) + v · ∇ṽ −∇p̃ = rv,h

∇ · ṽ = rp,h
(4.43)

where rv,h and rp,h are the residuals of the finite element approximation vh
and ph projected on the sub-scale space. Following the work in Ref.[58],Eq.4.43
could be approximated by introducing two stabilization parameters τ1 and
τ2, {

∂tṽ + τ−1
1 ṽ = ru,h

p̃ = τ−1
2 rp,h

(4.44)

where 
rv,h = P⊥(b− ∂tvh +∇ · (ν∇vh)− v · ∇vh −∇ph)
rp,h = P⊥(−∇ · vh)
τ1 = (c1

ν
h2

+ c2
|v|
h

)−1

τ2 = h2

c1τ1

(4.45)
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As we did in the variational multi-scale stabilized TCDR equation, in addi-
tion to neglecting the second order derivative accounting for the diffusion
part, we observe that,

P⊥(b) = 0 P⊥(∂tvh) = 0 (4.46)

The original problem in variational form becomes,


(wh, ∂tvh) + (ν∇vh,∇wh) + (v · ∇vh,wh)− (ph,∇ ·wh)

−
nelement∑
e=1

(ṽ,v · ∇wh)h −
nelement∑
e=1

(p̃,∇ ·wh)h =< b,wh >

(qh,∇ · vh)−
∑nelement

e=1 (ṽ,∇qh)h = 0

(4.47)

Thus, the final version of the approximated sub-scales is,

{
∂tṽ + τ−1

1 ṽ = −P⊥(v · ∇vh +∇ph)
p̃ = −τ2P

⊥(∇ · vh)
(4.48)

Considering the temporal derivative, if we neglect the ∂tṽ, the sub-scales
are called quasi-static. If we have quasi-static sub-scales, the stabilized finite
element approximation is



(wh,
∂vh
∂t

) + (ν∇vh,∇wh) + (v · ∇vh,wh)− (ph,∇ ·wh)

+

nelement∑
e=1

[(τ1P⊥(v · ∇vh),v · ∇wh) + (τ2P⊥(∇ · vh),∇ ·wh)]h

=< b,wh >

(qh,∇ · vh) +
∑nelement

e=1 (τ1P⊥(∇ph),∇qh)h = 0

(4.49)

The fully designed variational stabilized formulation is given in algorithm
2. Firstly, we discretize the time into N small steps, and the solver starts
to iterate at each time step. Inside each time step, due to nonlinear terms
appear in the Navier-Stokes equations, the Picard method is introduced to
tackle the nonlinearity, i.e. initializing the unknown with the solution from
previous step. Then, the solver compute the stabilization parameters and
the necessary orthogonal projections on the sub-scales. The sub-scales can
be tracked in two main ways, quasi-static or dynamic. Finally, the updated
solution is acquired through the θ method and the Galerkin finite element
method.
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Algorithm 2 Algorithm for solving the Navier-Stokes equations

1: for n = 0, ..., N − 1 do
2: i← 0
3: Initialize the unknown :

vn+1,i
h ← vnh ṽn+1,i ← ṽn pn+1,i

h ← pnh p̃n+1,i ← p̃n

4: while not converged do
5:

• i← i+ 1

vn+θ,i
h ← θvn+1,i

h + (1− θ)vnh ṽn+θ,i ← θṽn+1,i + (1− θ)ṽn

pn+θ,i
h ← θpn+1,i

h + (1− θ)pnh p̃n+θ,i ← θp̃n+1,i + (1− θ)p̃n

• v ← vn+θ,i−1
h + ṽn+θ,i−1

• Compute the stabilization parameters:

τ1 = (c1
ν

h2
+ c2
|v|
h

)−1 τ2 =
h2

c1τ1

τ1t = (
1

θδt
+

1

τ1

)

• Compute the projections:

ξh = −P̃(v · ∇vn+θ,i−1
h ) ζh = −P̃(∇pn+θ,i−1

h ) δh = −P̃(∇ · vn+θ,i−1
h )

• Update the sub-scales ṽn+θ,i, p̃n+θ,i with new vn+1,i
h and pn+1,i

h

by solving:
• if we use dynamic sub-scales then{

ṽn+1,i−ṽn

δt
+ τ−1

1 ṽn+θ,i = ξh + ζh

p̃n+θ,i = τ2δh

• else
ṽn+θ,i = τ1(ξh + ζh) p̃n+θ,i−1 = τ2δh

• Compute vn+1,i
h and pn+1,i

h by solving:

(wh,
vn+1,i
h − vnh

δt
) + (ν∇vn+θ,i

h ,∇wh) + (v · ∇vn+θ,i
h ,wh)− (pn+θ,i

h ,∇ ·wh)

(qh,∇ · vn+θ,i
h )−

∑
K

[(ṽn+θ,i,v · ∇wh +∇qh) + (p̃n+θ,i,∇ ·wh)]

=< b,wh >

6: Set up converged values :

vn+1
h ← vn+1,i

h ṽn+1 ← ṽn+1,i pn+1
h ← pn+1,i

h p̃n+1 ← p̃n+1,i
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4.6 Shock capturing techniques

The previous stabilization techniques yield a globally stable solution in a
convection dominant case, but local oscillations may still remain in domains
where the solution exhibits sharp gradients. Although these oscillations might
be neglected in linear problems, they may result in a global failure of itera-
tive schemes, especially in nonlinear cases. Methods aiming to avoid these
failure are usually termed “shock capturing” or “discontinuity capturing”
techniques. The main idea for the shock capturing method is to add some
artificial numerical diffusion (k) into the Galerking term of the finite element
equation in the proximity of sharp gradients.

There are mainly two kind of non-linear methods in order to calculate the
added diffusion terms. The first one the the so-called Residual based tech-
nique, which is consistent in the sense that if it is applied to the exact solution
of the concentration c and the velocity a, the residual is zero. The diffusion
term is

kTCDR =
1

2
αh
|R(ch)|
|∇ch|

(4.50)

kNS =
1

2
αh
|R(vh)|
|∇vh|

(4.51)

Where kTCDR and kNS are the added diffusion with respect to the TCDR
equation and the Navier-Stokes equation; α is a constant coefficient and the
recommended value is usually 0.8 in the Ref.[59], and R(·) is the residual
operator.

Another non-linear method is the weakly consistent Orthogonal projection
technique[56], a different method consisting in adding an artificial diffusion
which is proportional to the projection of the gradient onto the space orthog-
onal to the finite element space. The diffusion is active only in regions of
sharp gradients which cannot be resolved by the finite element mesh, that is
to say,

kTCDR =
1

2
α(|a|h+ sh2)

|P⊥(∇ch)|
|∇ch|

(4.52)

kNS =
1

2
α(|v|h)

|P⊥(∇vh)|
|∇vh|

(4.53)

In practice, the way to add these diffusion terms also varies if we consider
the crosswind direction. The first option is to add the diffusion terms in an
isotropic way, which is just to add the same artificial diffusion into all the
diffusion components,recalling Eq.3.34, Eq.3.35, i.e,

DTCDR = D + kTCDR νNS = ν + kNS (4.54)
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The second method is to add the artificial diffusion in an anisotropic fash-
ion. The initial idea is that the diffusion terms introduced by the stabiliza-
tion method satisfies the requirements for eliminating the local oscillations,
but they only added diffusion along the streamlines with quantities DST and
νST , excluding the numerical diffusion terms which have already been in-
corporated by the variational multi-scale stabilization method. The excluded
terms could be roughly estimated as,

DSG = τc|a|2 νSG = τNS|v|2 (4.55)

So considering to maintain the stabilization, the added artificial diffusions
are expressed as

DST = max(0, kTCDR −DSG) νST = max(0, kNS − νSG) (4.56)

Moreover, as previous research in Ref.[60] on the shock capturing method,
the artificial diffusion should be introduced only in the crosswind direction.
So the final version of the artificial diffusion terms considering both the vari-
ational multi-scale method and the shock capturing method is,

DTCDR = (ID +OkTCDR + SDST ) νNS = (Iν +OkNS + SνST ) (4.57)

where I is the second order identity tensor; S is the streamline direction
defined as

S =
v ⊗ v
|v|2

andO is the orthogonal projector defined asO = I − S.

In brief summary, we modify the original diffusion coefficients, D and ν,
of the TCDR equation and the Navier-Stokes equations respectively, giving
the the final diffusion terms considering both the streamline diffusion, DST

and νST , and crosswind diffusion kTCDR and kNS . However, after this mod-
ification, the original TCDR equation becomes a nonlinear equation, which
explains why we put the internal iteration in algorithm 1.
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Chapter 5

Validation of particle transport
model

In this chapter, considering we have formulated so many equations in chap-
ter 3, we validate the whole procedure and check whether it works as ex-
pected comparing our results with those in relevant literature. Firstly, the
dust settling velocity is shown for a range of dust particles whose diameters
will cause damages to health and environments. Besides, we implement our
model in FEMUSS which is multiphysics simulation software written in For-
tran 2003. Test cases are designed in order to verify the effectiveness of the
code and the model. Numerical tests show that our model works very well
and gives more accurate solutions than that did in the references. Further,
the last dynamic case implies that our model works very well if the approxi-
mation parameters and boundary conditions are specified well.

5.1 Particle deposition

In chapter 3 we have given the particle settling velocity changes with respect
to the dust properties we are especially interested the diameter. We plot the
settling velocity of dust with diameters ranging from 0.1µm to 100µm be-
cause these particles have significant effect on human health and environ-
ment. The settling velocity logarithmicly changes according to the particle
size as shown in figure 5.1.

TABLE 5.1: Parameters for computing settling velocity in dif-
ferent diameters

Particle density
ρp/kg ·m−3

Fluid density
ρa/kg ·m−3

Dynamic viscosity of
fluidsµ/Pa · s

2.5× 103 1.18 1.8× 10−5

Other parameters such as the particle density and fluid density and dynamic
viscosity in Eq.3.37 are shown in table 5.1, and we will use them also in other
simulations without explicit statements. This settling velocity obtained can
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FIGURE 5.1: Particle settling velocity with different particle size

be verified from the experimental results shown in figure 4 of Ref.[61] in
which the authors show comparisons between experimentally determined
dry deposition velocities and deposition velocities calculated from theoreti-
cal approximations.

5.2 Numerical tests

The numerical tests are conducted in a square domain: Ω = [0, 5] × [0, 5] as
implemented in Ref.[20], which has been explained in chapter 3. Numerical
results are compared in three cases: analytical solution, constant boundary
condition and step-function boundary condition. We will see their behavior
in this section. In all this test, the wind velocity profiles are assumed to be

U =

{
u∗
k

ln(z/z0) for z0 < z < δ

Umax for z ≥ δ
(5.1)

where U is the horizontal velocity; k is the von Karman constant. U reaches
a maximum Umax at the boundary layer height z = δ(≈ 0.25m). The velocity
profile inputted into the numerical code takes the boundary layer height ef-
fect into account as well. The diffusion coefficient is taken as constant above
the boundary layer, D = u∗kδ.

5.2.1 Femuss

Femuss is abbreviated for Finite Element Method Using Subgrid Scales, a pro-
gram developed in our group for solving multi-physics problem using finite
element methods. This powerful program written in Fortran 2003, is object
oriented and now currently has been fully parallelized through MPI.
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The idea for such program is to solve the multi-physics problem through the
following procedures: a) the master node reads the data and after domain
partition scatters the geometry, boundary conditions,etc. to all nodes; b) The
numerical simulation starts in parallel. Global data required for the initial
scattering is released from memory; c) The previous two steps need to be
separated from each other in the program, so that the first one (involving
many serial operations) is done in a local server and the second could be sent
to the parallel cluster if necessary; d) at this point, the linear algebra solver
library not only is used as a solver but also is in charge of the partitioning
and communications between subdomains; e) after the problem is solved, the
results are processed in GiD, a pre and post processor developed at CIMNE:
http://www.cimne.com.

We implement our particle transport model in Femuss and show the numer-
ical tests compared to the results in the literature as the validation.

5.2.2 Comparisons with analytical solutions

We can also compare our mathematical model with numerical solution to
other analytical and numerical solution such as Roney and White’s analytical
model expressed in terms of Gamma Function as we discussed in chapter 3.
In Ref.[20], Roney and White solve the problem with the parameters shown
in table 5.2.

TABLE 5.2: Parameters for Roney and White’s model

z0/m u∗/m · s−1 C0/mg ·m−3 w/m · t−1 β m

0.0001 0.8 50 0.0024 14.277 0.2244

Both the numerical and analytical solutions appear to be very slowly ap-
proaching Gillette’s hypothetical solution, which is valid only for x→∞. At
x = 5.0m in the wind tunnel experiments, as expected, Gillette’s analytical
solution is not valid. The numerical solution here and Eltayeb and Hassan’s
analytical solution provide a better model for what one should expect when
measuring the wind-tunnel concentration profiles. The numerical solutions
are then compared to the data from the literature for the constant surface
boundary condition in the next sections.

http://www.cimne.com
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FIGURE 5.2: Solution comparisons for three different methods
obtained from a constant concentration on surface at x = 5m

5.2.3 Test of boundary with constant boundary conditions

We can still run more cases which have been implemented in Roney and
White’s work[20]. The boundary condition for this problem is defined with
a slight modification of Eq.3.7,


c(0, z) = 0.0

c(x,∞) = 0.0

c(x, z0) = F (x)

(5.2)

where we set the function F (x) on the land surface boundary as a constant
C0 value. This cases happens when the near-surface flow reaches a steady
state and the concentration remains constant for the same soil type. z0 here
appears because the concentration in Roney and white’s work are obtained at
that height, but that can be used to approximate the boundary concentration
through experiments. So here we still keep this notation but shall keep in
mind that c(x, z0) is the surface boundary concentration.

TABLE 5.3: Parameters for simulation with constant surface
concentration

z0/m u∗/m · s−1 C0/mg ·m−3 w/m · t−1 β m

0.00063 0.8 92 0.0024 14.277 0.2244

In figure 5.3, all the boundary conditions are clearly given according to the
previous analysis. The surface concentration is fixed to 92mg/m3. The nu-
merical solution contour is shown in figure 5.4. The solution has largest value
on the boundary and decrease smoothly to 0mg/m3 as the height increases.
This solution is the same as in figure 6 of Ref.[20].
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FIGURE 5.3: Bound-
ary conditions for
tests with constant
surface concentra-

tion

FIGURE 5.4: Dust
concentration for
tests with constant
surface concentra-

tion

5.2.4 Test of boundary with step-function boundary condi-
tions

A step-function boundary conditions was used to reproduce the North and
South Sheet experimental simulations carried by Roney and White[62], which
are designed for non-homogenous land surface (in terms of soil type) with
sand soil placed upwind of a “loamy-type” soil. Two constant surface bound-
ary were designed for this cases, F (x) = C01 for the sand soil and F (x) = C01

for the loamy soils. More formally, this simulations are designed with pa-
rameters given in table 5.4 when F (x) is a step function,

F (x) =

{
C01 for 0 ≤ x ≤ 2.65

C02 for 2.65 < x ≤ 5.0
(5.3)

TABLE 5.4: Parameters for simulation with step-function

z0/m u∗/m · s−1 C01/mg ·m−3 C02/mg ·m−3 w/m · t−1 β m

0.00063 0.8 20 300 0.0024 14.277 0.2244

We choose the same parameters for the simulation as implemented by Roney
and White[20] in order to validate our model. The boundary conditions are
the same as in the previous test, except a small change on the land surface
as in figure 5.5. On the left part on the surface, the concentration is fixed to
20mg/m3 and the remaining part is fixed to 300mg/m3 which are the so-called
step-function boundary conditions. If we have more than two kind of soils
on the surface, the step-function needs to be split into more sections, consid-
ering the number of soil types. Figure 5.6 is the concentration contours of the
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FIGURE 5.5: Bound-
ary conditions for
tests with step
function on surface

FIGURE 5.6: Dust
concentration for
tests with step

function

FIGURE 5.7: Dust
concentration at
selected downwind

position

numerical solution for the case in which the surface boundary condition F (x)
is a step function. In order to show the different effect of the step function,
we choose three downwind position and plot the result in figure 5.7. We can
observe that although the surface concentrations could be different on the
bottom due to soil types, they show a similar decreasing profile as the height
goes up. The step-function solution is a boundary condition that does not
readily lead itself to analytical solution; and thus, this case exemplifies the
advantages of numerical solution. This solution here can also be compared
to figure 10 of Ref.[20].

5.2.5 Test of dynamical model

With the previous validation, we here could try to show whether our model
could capture the solution in a dynamic case which integrates all parts as
we explained in chapter 3, solving particle transport problem coupled with
Navier-Stokes problem. The simple model is sketched a square domain:
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Ω = [0, 4] × [0, 4]. The bottom edge, the land surface, is the only boundary
for generating particles during the erosion process, which means the vertical
dust flux comes to work as an Neumann boundary condition. In the other
boundary, there are no fluxes could cross the boundary. Considering the
Navier-Stokes problem, we assign the inlet boundary on the bottom-left edge
and outlet on the top-left edge, while in the remaining edges, the boundaries
are assigned with slip wall boundary condition, figure 5.8. Initially, we give
an inlet velocity increasing from 0m/s to v = [5m/s, 0]T, and the outlet is free.
At a given time, we stop the inlet flow in order to check if the settling pro-
cess would happen,as in figure 5.9. Considering the concentration equation,
we have known that we inject the clean flow on the inlet boundary, so the
solution should be 0 on that place, figure 5.10. On the other hand, the bottom
edge is the land surface, dust particles are generated due to the effect of flow
erosion, and therefore, the boundary conditions there belongs to Neumann
type.

FIGURE 5.8: Bound-
ary conditions for
the Navier-Stokes
equations in dy-

namic case

FIGURE 5.9: Veloc-
ity profile on the inlet

boundary

FIGURE 5.10: Dirich-
let boundary condi-
tions for concentra-

tion equation

FIGURE 5.11: Neu-
mann boundary con-
ditions on land sur-

face

We calculated the evolution of concentration from 0s to 500s. Since we are
unable to show the animations here, selected points, A, B, C and D, in the
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FIGURE 5.12: Dust
concentration evolu-
tion for 4 selected

points

FIGURE 5.13: Dust
concentration
(c/kg ·m−3) at 500s

domain are extracted in order to show the solution evolution with respect
to time, figure 5.12. We observe that in an initial stage, the concentration
remains 0µg ·m−3, which is because the value of friction velocity on the land
surface has not reached that of threshold friction velocity and therefore no
vertical dust fluxes could be generated. And also because the dust requires
time to propagate after the fluxes have entered the domain from the bottom
edge. Increasing with the inlet flow velocity until t = 45s, the inlet velocity
reaches its peak and remains steady until t = 75s. During this time, the
concentration also reaches its maximum. Later, when the velocity of the inlet
flow starts to decrease, the concentration also decreases roughly to 0µg ·m−3

at t = 500s, which means that the dust deposition formulation works very
well. On the other hand, we can see that there two points,i.e. A and B,
have very small concentration throughout the whole period. This is because
the inlet is clean flow without any pollutants, and when the clean flow is
injected into the domain, it is mixed with the dirty dust and carries it to the
outlet edge. Figure 5.13 gives a very clear contour of the concentrations in
the whole computational domain at t = 500s.

At the end of these tests successfully implemented, we have validated our
solution with respect to analytical solutions and also, depending the require-
ments of the simulated problems, the numerical solutions with different bound-
ary conditions from the model of Roney and White[20]. Our code works very
well. The last dynamic case shows the mechanism of the dust generation and
dust deposition process in small flow velocity.
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Chapter 6

Numerical simulation of wind
tunnel

In this chapter, we give a brief introduction to wind tunnel. Besides, we also
explain how dust particles are settled in the atmosphere and this should be
observed by wind tunnel experiment. However, wind tunnel experiment has
a strict requirement for the instrument, so we apply our theoretical model,
instead of real experiments, to approximate the dust dynamics in a large do-
main.

6.1 Problem introduction

6.1.1 Wind tunnel experiment

The wind tunnel is widely used in aerodynamics to produce the desired flow
field with specifically controlled conditions if necessary. Based on the flow
speed, there are four kind of wind tunnels: supersonic or low speed wind
tunnels, M � 1.0; transonic wind tunnels, M ≈ 1.0; supersonic wind tun-
nels, 1.0 < M < 5.0; hypersonic wind tunnels, M > 5.0.

On the other hand, atmospheric pollution is generated primarily from the
spewing of gasses and erosive land which can release particles into the at-
mosphere. If these particles are heavy enough and also the windspeed is not
too large, they will fail to reach a suspended status in atmosphere. However,
if the particles were very fine and carried by violent wind, they would rise
a certain distance, travel with the wind and then descend slowly. For exam-
ple, airborne dust particles can be transported thousands of kilometers from
their source region, therefore the interaction of dust aerosols with their com-
ponents of the Earth system produces a wide range of often complex impacts
on ecosystems, weather and climate, hydrological cycle, agriculture, and hu-
man health.

Existing methods used to simulate particle transport are based mainly on
wind tunnel experiments. A recent review of Robert[63] summarized re-
search on the dust source and focus mainly on dust emission processes in
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terms of quantification, landforms and geomorphology. Many experiments
use the passive sampling method, i.e. with instruments not provided with
flow meters to collect the dust particles, during which many particles are
emitted from the soil [64]. The advantage of passive samplers is that they op-
erate mechanically and are much cheaper than active samplers so that many
locations can be sampled at a reasonable cost[65]. They allow one to collect
considerable quantities of sediment, sometimes grams and more, which can
later be analyzed for grain size distribution, chemical composition, biological
content, and other analyses. The measurements of dust flux by wind remain
one of the most problematic procedure in our Earth system but also necessary
to assess the intensity of dust particles in a given environment, especially the
horizontal and vertical flux. In order to obtain correct flux data, we require
that the instruments have sufficient efficiency and enough accuracy, but this
is not practical especially in no-windy conditions[66].

6.1.2 Numerical experiment

Instead of an real wind tunnel experiment, we here could apply our dust
transport model with approximate boundary conditions to the simulation of
dynamics of dust with diameters 10µm in a certain domain, which shall also
be able to reproduce the results as from the real tunnel experiment. The flux
formulation,Eq. 3.28, used is Shao’s 2004 scheme and specific parameters are
given in Appendix A

FIGURE 6.1: Dimensional drawing of the wind tunnel model

Figure 6.1 is the wind tunnel model in which we are going to conduct our
dust transport model. We can see that the length and height of such wind
tunnel are 50m and 4.72m, respectively. In order to show the internal struc-
ture of the wind tunnel, the bottom surface has been removed temporally,
but we should keep in mind that our domain is a closed domain in 3D. The
conditions for flow and dust transport are assigned independently as,

1. Boundary conditions for Navier-Stokes equations. There exists a tube
to define the inlet flow which has been marked by the keyword “Inlet”
in the figure, and correspondingly, another small circle on the surface
is labeled by the keyword “Outlet”. Other boundaries for the flow are
assigned with slip boundary conditions, so the flow can only be injected
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through the inlet boundary by a given velocity, and leave the domain
through ony the outlet boundary.

2. Boundary conditions for TCDR equation. In the wind tunnel, we have
to assign the the bottom edge as the land surface, so when the flow
moves over the surface with a friction velocity lager than the threshold
friction velocity, the dust will be generated then enters the domain with
the vertical dust flux.

3. Initial conditions. Initially the flow velocity is [0m · s−1, 0, 0]T in the
whole domain and therefore the dust is zero according to the erosion
condition. However, the inlet velocity keeps increase to [30m · s−1, 0, 0]T

and the friction velocity will reach the threshold friction velocity, and
the dust is generated. The coupled system remains in this status until
the friction velocity is smaller that threshold. We stop the injected flow
after a while in order to see the dust settling down on the land surface.

6.2 Simulation results

We simulate the whole wind tunnel with a time scale from 0s to 600s. The
dust concentration shows a similar dynamical behavior as we see in the last
test of chapter 5. At an initial stage, the dust is 0 because the friction veloc-
ity has not reached the threshold friction velocity. As the friction velocity
increases, vertical fluxes on the land surface are activated on the correspond-
ing land surface. In figure 6.2, we can observe the dust concentration profiles
in the wind tunnel. It is interesting that the largest dust concentration is lo-
cated near the inlet boundary, which is because the flow has a relatively large
velocity compared to that of other place as shown in figure 6.3. Because the
inlet flow drop linearly to [0m · s−1, 0, 0]T at t = 60s, so the flow would remain
motional due to the inertia.

FIGURE 6.2: Dust concentration in wind tunnel at t = 14s
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FIGURE 6.3: Flow velocity in wind tunnel at t = 14s

FIGURE 6.4: Dust concentration in wind tunnel at t = 600s
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FIGURE 6.5: Flow velocity in wind tunnel at t = 600s

In figure 6.5 we see that the flow velocity has decreased to a steady state.
And we can image that if the model had been simulated with a longer time
scale, it might be possible for us to find the flow in static status. The only
convection velocity for the dust concentration is the settling velocity. Fig-
ure 6.4 is the corresponding dust concentration distributed in the domain,
where the internal places have a relatively larger dust concentration which
is convected by wind flow to the outlet boundary. However, because the in-
let flow is stopped, as we have explained, the dust fails to reach the outlet
boundary, and all the quantity dust eroded from the bottom surface has to
be conservative in the wind tunnel and waits to settle down with the settling
velocity. For the particle in our simulation, diameter as 10µm, the theoretical
settling velocity is 6.3 · 10−3m/s, which is negligible compared to flow veloc-
ity as shown in figure 6.5, meaning that it requires a very long term for the
particles to settle down. During this time, the dust remains floating in the
air. This is also the reason why we find many cities suffer from fog storm or
suspended particles.
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Chapter 7

Conclusions

In the following chapter, the main contributions of this thesis are summa-
rized and research lines for future development are presented.

7.1 Contributions

The objective of this work, to develop a numerical model for the transport of
dust particles in fluids considering the gravitational effects, has been achieved
with the assistance of the finite element and finite difference methods.

The main contributions of the thesis can be summarized as follows.

1. Explanations of dust erosion mechanism. Erosion processes are affected
many factors including the soil properties and flow velocity. The land
surface erosion is initiated when when the friction velocity is larger
than the threshold friction velocity. The value of threshold friction ve-
locity depends on the property of dust particles, e.g., diameters, soil
moisture and surface land roughness,etc. Once the land surface is eroded
by injected flow, the dust entering into the domain can be quantized
through an approximation of horizontal flux and vertical flux which
are formulated explicitly through experimental data fitting. Once the
flux in available, the concentration dynamics in the domain can be de-
scribed through the unsteady convection-diffusion equation.

2. Stabilized finite element formulations for TCDR equation and incom-
pressible Navier-Stokes equations. The complexity of the mathematical
problem makes their numerical solution very difficult. Despite the im-
portant incompressibility condition which is tackled a Lagrange multi-
plier, the nonlinear convection term appearing in Navier-Stokes equa-
tion make the numerical approximation much more difficult. A varia-
tional multiscale finite element approximation for coupled TCDR and
Navier-Stokes equations is described in partitioned manner. The sub-
scales were considered as transient and orthogonal, keeping the effect
of the sub-scales both in the nonlinear convective terms of the momen-
tum equations. Considering in real engineering case, the concentration
may have large gradient if some regions, the shock capturing methods,
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adding more numerical diffusion in the crosswind direction, are also
extended to the problem which leads to more accurate solutions.

3. Numerical simulation of dust transport in wind tunnel. This simula-
tion helps restore what actually happens in a our environmental atmo-
sphere. Dust particles are generated in regions where the wind has rel-
atively large velocity and then the dust can be convected to the down-
wind direction, thereby polluting more regions. They also take a long
term to settle down onto the ground because the deposition velocity is
almost negligible compared to that of the wind. So people are easily to
be exposed to these harmful extent and suffer from health issues. And
it can cause other corresponding adverse effects on the environment.

7.2 Future developments

7.2.1 Extension to dust with mixed diameters

Depending on the soil type, there is usually a larger amount of dust which
is not “free” but contained in aggregates and can be released only through
mechanical destructions. It is therefore necessary to estimate the fraction of
dust particles in terms of different size. In the model, all the dust particles
are assumed to have the same diameters after eroded by medium flow. This
hypothesis does not really holds in an real situation where the particle diam-
eters are distributed among a certain range[2, 4].

7.2.2 Adaptive mesh refinement

Complex flow features, like shock and boundary layers require different mesh
sizes and order of approximations for efficient numerical simulations. The
computational cost of complex simulations can be optimized by adapting
the mesh or polynomial degrees, in different regions of solutions. For ex-
ample, in the region close to the inlet boundaries, the time-dependent inlet
velocity would generate oscillations when it keeps increasing or decreasing
before reaching a steady-state. Besides, the suddenly added inlet velocity or
stopped inlet velocity would also generate high jump of solutions, so it nec-
essary to adopt adaptive mesh refinement in these specific regions in order
to have smooth solutions[67].

7.2.3 Boost of performance

This is always a hot topic and important step in large scale scientific com-
puting. Although the code in Femuss is written in Fortran and can be run in
multi-processors, there are may still many other special techniques to boost
the performance. Recalling the existed two groups of domain de-composition
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methods,i.e, overlapping and non-overlapping domain de-composition, we
can chose one of them according to the size of our problem. More precisely,
with different domain de-composition methods such as Dirchlet-Neumann,
Neumann-Neumann, Balanced Neumann-Neumann and Balanced Neumann-
Neumann by constraint, the linear system equations to be solved would have
different condition number, making the problem strong scalable or weak
scalable[68, 69].
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Appendix A

Properties of dust particles

Particle size 1 · 10−1m
Particle surface wetness 0.02
Particle plastic pressure 1000Pa

Air density 1.18kg ·m−3

Dynamic Viscosity of air 1.8 · 10−5Pa · s
Vegetated fraction 0

Particle density 2.5 · 10−1kg ·m−3

Bare roughness 0.002
Gravity 9.81kg ·m · s−2
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